
Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

126

Trees, Heaps, and Heapsort

16 Trees, Heaps, and Heapsort
16.1 Introduction

Trees are the basis for several important data types and data structures. There are also several sorting
algorithms based on trees. One of these algorithms is heapsort, which uses a complete binary tree
represented in an array for fast in-place sorting.

16.2 Basic Terminology

A trees is a special type of graph.

Graph: A collection of vertices, or nodes, and edges connecting the vertices. An edge may be
thought of as a pair of vertices. Formally, a graph is an ordered pair <V,E> where V is a set of
vertices, and E is a set of pairs of elements of V.

Simple path: A list of distinct vertices such that successive vertices are connected by edges.

Tree: A graph with a distinguished vertex r, called the root, such that there is exactly one simple
path between each vertex in the tree and r.

We usually draw trees with the root at the top and the vertices and edges descending below. Figure 1
illustrates a tree.

r

a b c

e fd

 Figure 1: A Tree

Vertex r is the root. The root has three children: a, b, and c. The root is the parent of these vertices. These
vertices are also siblings of one another because they have the same parent Vertex a has child d and
vertex c has children e and f . The ancestors of a vertex are the vertices on the path between it and the
root; the descendents of a vertex are all the vertices of which it is an ancestor. Thus vertex f has ancestors
f, c, and r, and c has descendents c, e, and f . A vertex without children is a terminal vertex or a leaf;
those with children are non-terminal vertices or internal vertices. The tree in Figure 1 has three internal
vertices (r, a, and c) and four leaf vertices (b, d, e, and f). The graph consisting of a vertex in a tree, all
its descendents, and the edges connecting them, is a sub-tree of the tree.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

127

Trees, Heaps, and Heapsort

A graph consisting of several trees is a forest. The level of a vertex in a tree is the number of vertices in
the path from the vertex to the root, not including itself. In Figure 1, vertex r is at level zero, vertices
a, b, and c are at level one, and vertices d, e, and f are at level two. The height of a tree is the maximum
level in the tree. The height of the tree in Figure 1 is two.

An ordered tree is one in which the order of the children of each vertex is specified. Ordered trees
are not drawn in any special way—some other mechanism must be used to specify whether a tree is
ordered.

16.3 Binary Trees

Binary trees are especially important for making data structures.

Binary tree: An ordered tree whose vertices have at most two children. The children are
distinguished as the left child and right child. The sub-tree whose root is the left (right) child
of a vertex is the left (right) sub-tree of that vertex.

A full binary tree is one in which every level is full except possibly the last. A complete binary tree is a
full binary tree in which only the right-most vertices at the bottom level are missing. Figure 2 illustrates
these notions.

a

b

d

e f

gc h

i

j k

m nl

 Figure 2: Binary Trees

The trees in Figure 2 are binary trees. In the tree on the left, vertex a has a left child, vertex b has a right
child, and vertex c has no children. This tree is neither full nor complete. The middle tree is full but not
complete, and the right tree is complete.

Trees have several interesting and important properties, the following among them.

•	 A tree with n vertices has n-1 edges.
•	 A complete binary tree with n internal vertices has either n or n+1 leaves.
•	 The height of a full binary tree with n vertices is floor(lg n).

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

128

Trees, Heaps, and Heapsort

16.4 Heaps

A vertex in a binary tree has the heap-order property if the value stored at the vertex is greater than or
equal to the values stored at its descendents.

Heap: A complete binary tree whose every vertex has the heap-order property.

An arbitrary complete binary tree can be made into a heap as follows:

•	 Every leaf already has the heap-order property, so the sub-trees whose roots are leaves are
heaps.

•	 Starting with the right-most internal vertex v at the next-to-last level, and working left
across levels and upwards in the tree, do the following: if vertex v does not have the heap-
order property, swap its value with the largest of its children, then do the same with the
modified vertex, until the sub-tree rooted at v is a heap.

It is fairly efficient to make complete binary trees into heaps because each sub-tree is made into a heap
by swapping its root downwards in the tree as far as necessary. The height of a complete binary tree is
floor(lg n), so this operation cannot take very long.

Heaps can be implemented in a variety of ways, but the fact that they are complete binary trees makes it
possible to store them very efficiently in contiguous memory locations. Consider the numbers assigned
to the vertices of the complete binary tree in Figure 3. Note that numbers are assigned left to right across
levels, and from top to bottom of the tree.\

0

87

3 4 6

21

5

9
 Figure 3: Numbering Vertices for Contiguous Storage

This numbering scheme can be used to identify each vertex in a complete binary tree: vertex zero is the
root, vertex one is the left child of the root, vertex two is the right child of the root, and so forth. Note
in particular that

•	 The left child of vertex k is vertex 2k+1.
•	 The right child of vertex k is vertex 2k+2.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

129

Trees, Heaps, and Heapsort

•	 The parent vertex k is vertex floor((k-1)/2).
•	 If there are n vertices in the tree, the last one with a child is vertex floor(n/2) - 1.

If we let these vertex numbers be array indices, then each array location is associated with a vertex in the
tree, and we can store the values at the vertices of the tree in the array: the value of vertex k is stored in
array location k. The correspondence between array indices and vertex locations thus makes it possible
to represent complete binary trees in arrays. The fact that the binary tree is complete means that every
array location stores the value at a vertex, so no space is unused in the array.

16.5 Heapsort

We now have all the pieces we need to for an efficient and interesting sorting algorithm based on heaps.
Suppose we have an array to be sorted. We can consider it to be a complete binary tree stored in an
array as explained above. Then we can

•	 Make the tree into a heap as explained above.
•	 The largest value in a heap is at the root, which is always at array location zero. We can

swap this value with the value at the end of the array and pretend the array is one element
shorter. Then we have a complete binary tree that is almost a heap—we just need to sift the
root value down the tree as far as necessary to make it one. Once we do, the tree will once
again be a heap.

•	 We can then repeat this process again and again until the entire array is sorted.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

130

Trees, Heaps, and Heapsort

This sorting algorithm, called heapsort, is shown in the Ruby code in Figure 4 below.

def heapify(array, i, max_index)
 tmp = array[i]
 j = 2*i + 1
 while j <= max_index
 j += 1 if j < max_index && array[j] < array[j+1]
 break if array[j] <= tmp
 array[i] = array[j]
 i, j = j, 2*i + 1
 end
 array[i] = tmp
end

def heap_sort(array)
 # make the entire array into a heap
 max_index = array.size-1
 ((max_index-1)/2).downto(0).each do | i |
 heapify(array,i,max_index)
 end

 # repeatedly remove the root and remake the heap
 loop do
 array[0],array[max_index] = array[max_index],array[0]
 max_index -= 1
 break if max_index <= 0
 heapify(array, 0, max_index)
 end
 return array
end

Figure 4: Heapsort

A complex analysis that we will not reproduce here shows that the number of comparisons done by
heapsort in both the best, worst, and average cases are all in O(n lg n). Thus heapsort joins Shell sort,
merge sort, and quicksort in our repertoire of fast sorting algorithms. Empirical studies have shown that
while heapsort is not as fast as quicksort, it is not much slower than Shell sort and merge sort, with the
advantages that it does not use any extra space,and it does not have bad worst case complexity.

16.6 Summary and Conclusion

A tree is a special sort of graph that is important in computing. One application of trees is for sorting:
an array can be treated as a complete binary tree and then transformed into a heap. The heap can then
be manipulated to sort the array in place in O(n lg n) time. This algorithm is called heapsort and it is a
good algorithm to use when space is at a premium and respectable worst case complexity is required.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

131

Trees, Heaps, and Heapsort

16.7 Review Questions

1. In Figure 1, what are the descendents of r? What are the ancestors of r?
2. How can you tell from a diagram whether a tree is ordered?
3. Is every full binary tree a complete binary tree? Is every complete binary tree a full binary

tree?
4. Where is the largest value in a heap?
5. Using the heap data structure numbering scheme, which vertices are the left and right

children of vertex 27? Which vertex is the parent of vertex 27?
6. What is the worst case behavior of heapsort?

16.8 Exercises

1. Represent the three trees in Figure 2 as sets of ordered pairs according to the definition of a
graph.

2. Could the graph in Figure 1 still be a tree if b was its root? If so, redraw the tree in the usual
way (that is, with the root at the top) to make clear the relationships between the vertices.

3. Draw a complete binary tree with 12 vertices, placing arbitrary values at the vertices. Use
the algorithm discussed in the chapter to transform the tree into a heap, redrawing the tree
at each step.

4. Suppose that we change the definition of the heap-order property to say that the value
stored at a vertex is less than or equal to the values stored at its descendents. If we use
the heapsort algorithm on trees that are heaps according to this definition, what will be
the result?

5. In the heapsort algorithm in Figure 4, the heapify() operation is applied to vertices
starting at max_index-1. Why does the algorithm not start at max_index?

6. Draw a complete binary tree with 12 vertex, placing arbitrary values at the vertices. Use the
heapsort algorithm to sort the tree, redrawing the tree at each step, and placing removed
values into a list representing the sorted array as they are removed from the tree.

7. Write a program to sort arrays of various sizes using heapsort, Shell sort, merge sort, and
quicksort. Time your implementations and summarize the results.

8. Introspective sort is a quicksort-based algorithm recently devised by David Musser.
introspective sort works like quicksort except that it keeps track of the depth of recursion
(or of the stack), and when recursion gets too deep (about 2 ∙ lg n recursive calls or
stack elements), it switches to heapsort to sort sub-lists. This algorithm does O(n lg n)
comparisons even in the worst case, sorts in place, and usually runs almost as fast as
quicksort on average. Write an introspective sort function, time your implementation
against standard quicksort, and summarize the results.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

132

Trees, Heaps, and Heapsort

16.9 Review Question Answers

1. In Figure 1 the descendents of r are all the vertices in the tree. Vertex r has no ancestor
except itself.

2. You can’t tell from a diagram whether a tree is ordered; there must be some other notation
to indicate that this is the case.

3. Not every full binary tree is complete because all the leaves of a tree might be on two levels,
making it full, but some of the missing leaves at the bottom level might not be on the right,
meaning that it is not complete. Every complete binary tree must be a full binary tree,
however.

4. The largest value in a heap is always at the root.
5. Using the heap data structure numbering scheme, the left child of vertex 27 is vertex

(2*27)+1= 55, the right child of vertex 27 is vertex (2*27)+2 = 56, and the parent of vertex
27 is vertex floor((27-1)/2) = 13.

6. The worst, best, and average case behavior of heapsort is in O(n lg n).

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

